
in the world of microservices
DATA INTEGRATION



About me

Valentine Gogichashvili
Head of Data Engineering @ZalandoTech
twitter: @valgog
google+: +valgog
email: valentine.gogichashvili@zalando.de





15 countries
4 fulfillment centers
18+ million active customers
~3 billion € revenue
150,000+ products
10,000+ employees
135 million visits per month

One of Europe's largest 
online fashion retailers



Zalando Technology

BERLIN



Zalando Technology

BERLIN
DORTMUND
DUBLIN

HELSINKI

ERFURT

MÖNCHENGLADBACH

HAMBURG



Zalando Technology

1100+ TECHNOLOGISTS

Rapidly growing 
international team

http://tech.zalando.com



Good old small world



Once upon a time...

Started as a tiny online shop

Prototyped on Magento (PHP)

Used MySQL as a database

Web Application

Backend

Database



REBOOT



REBOOT

5½ years ago

● Java
○ macro service architecture with SOAP as RPC layer

● PostgreSQL 
○ Heavy usage of Stored Procedures
○ 4 databases + 1 sharded database on 2 shards

● Python for tooling (i.e code deploy automation)



REBOOT

Java Web 
Frontend

Java Backend

PostgreSQL

Java Backend

PostgreSQL

Java Backend

PostgreSQL 9.0 
RC1PostgreSQL 9.0 

RC1PostgreSQL 9.0 
RC1PostgreSQL

"macro" services



REBOOT

Classical ETL process

Business Logic

Data Warehouse (DWH)

DatabaseDBA

BI

Business Logic

Database

Business Logic

Database

Business Logic

Database

Dev



REBOOT

Classical ETL process

● Use-case specific

● Usually outputs data into a Data Warehouse
○ well structured
○ easy to use by the end user (SQL)



Live long and prosper...

Very stable architecture that is still in use in the oldest 
(vintage) components

We implemented everything ourselves starting from 
warehouse and order management and finishing with Web 
Shop and Mobile Applications



Live long and prosper...

"I want to code in Scala/Clojure/Haskell because it is cool and compact"



"I want to code in Scala/Clojure/Haskell because it is cool and compact"

"But nobody will be able to support your code if you leave the company, 
everybody should use Java, learn SQL and write Stored Procedures"

Live long and prosper...



"I want to code in Scala/Clojure/Haskell because it is cool and compact"

"But nobody will be able to support your code if you leave the company, 
everybody should use Java, learn SQL and write Stored Procedures"

"Zalando is cool but f*ck you, I am moving on to another company where I 
can use cool technologies!"

Live long and prosper...



RADICAL AGILITY



AUTONOMY

PURPOSE

MASTERY

Radical Agility



Autonomy

Autonomous teams

● can choose own technology stack

● including persistence layer 

● are responsible for operations

● should use isolated AWS accounts



Supporting autonomy — Microservices

Business 
Logic

Database

 R
E

S
T 

A
P

I

Business 
Logic

Database

 R
E

S
T 

A
P

I

Business 
Logic

Database

 R
E

S
T 

A
P

I

Business 
Logic

 R
E

S
T 

A
P

I

Business 
Logic

Database

 R
E

S
T 

A
P

I

Business 
Logic

Database

 R
E

S
T 

A
P

I

Business 
Logic

 R
E

S
T 

A
P

I



Supporting autonomy — Microservices

Business Logic

Database

Team A Business Logic

Database

Team B

 R
E

S
T 

A
P

I R
E

S
T A

P
I

● Applications communicate using REST APIs

● Databases hidden behind the walls of AWS VPC

public Internet



Supporting autonomy — Microservices

Business Logic

Database

Team A Business Logic

Database

Team B

Classical ETL process is impossible!

R
E

S
T A

P
I

public Internet

 R
E

S
T 

A
P

I



Supporting autonomy — Microservices

Business 
Logic

Database

 R
E

S
T 

A
P

I

Business 
Logic

Database

 R
E

S
T 

A
P

I

Business 
Logic

Database

 R
E

S
T 

A
P

I

Business 
Logic

 R
E

S
T 

A
P

I

Business 
Logic

Database

 R
E

S
T 

A
P

I

Business 
Logic

Database

 R
E

S
T 

A
P

I

Business 
Logic

 R
E

S
T 

A
P

I



Business 
Logic

 R
E

S
T 

A
P

I

A
pp

 D

Supporting autonomy — Microservices

 REST API

Nakadi Event Bus

 REST API

Business 
Logic

Database

 R
E

S
T 

A
P

I

A
pp

 A

Business 
Logic

Database

 R
E

S
T 

A
P

I

A
pp

 B

Business 
Logic

Database

 R
E

S
T 

A
P

I

A
pp

 C



NAKADI
Message Bus



Nakadi Message Bus

● A secured HTTP API

Access to the API can be managed and secured using OAuth scopes.

● An event type registry

Events can be validated before they are distributed to consumers.

● Inbuilt event types

Nakadi also has optional support for events describing business processes and data 

changes using standard primitives for identity, timestamps, event types, and causality.



Nakadi Message Bus

● Low latency event delivery

Streaming HTTP connection, allowing near real-time event processing. 

● Compatibility with the STUPS project

● Built on proven infrastructure

Nakadi uses the excellent Apache Kafka as its internal message broker and the also 

excellent PostgreSQL as a backing database.

https://stups.io/
http://kafka.apache.org/


Business 
Logic

 R
E

S
T 

A
P

I

A
pp

 D

Supporting autonomy — Microservices

 REST API

Nakadi Event Bus

 REST API

Business Intelligence

Business 
Logic

Database

 R
E

S
T 

A
P

I

A
pp

 A

Business 
Logic

Database

 R
E

S
T 

A
P

I

A
pp

 B

Business 
Logic

Database

 R
E

S
T 

A
P

I

A
pp

 C

Data heavy services
(ML and DDDM)



Supporting autonomy — Microservices

 REST API

Nakadi Event Bus
 REST API

App A App B App DApp C BI

Data Warehouse 



Supporting autonomy — Microservices

 REST API

Nakadi Event Bus
 REST API

App A App B App DApp C BI

Data Warehouse 

?



SAIKI



SAIKI

Saiki Data Platform

 REST API

Nakadi Event Bus
 REST API

App A App B App DApp C BI

Data Warehouse
(Oracle)



BI

Data Warehouse
(Oracle)

SAIKI

Saiki Data Platform

 REST API

Nakadi Event Bus
 REST API

App A App B App DApp C

Tukang

 REST API

AWS S3



Saiki Data Platform

Saiki Tukang
● First cleansing of events (out of order, duplicates, etc.)

● Materialize data from Nakadi in AWS S3

● Provide metadata via RESTful interface

● DWH downloads data directly from cloud storage



Saiki Data Platform

Old Load Process New Load Process

relied on Delta Loads relies on Event Stream

JDBC Connection RESTful HTTPS Connections

data quality could be controlled by BI 
independently

Trust for correctness of data in the 
delivery teams

PostgreSQL dependent Independent of the source technology 
stack

N to 1 data stream N to N stream, no single data sink



BI

Data Warehouse
(Oracle)

SAIKI

Saiki Data Platform

 REST API

Nakadi Event Bus
 REST API

App A App B App DApp C

Tukang

 REST API

AWS S3



BI

Data Warehouse
(Oracle)

SAIKI

Saiki Data Platform

 REST API

Nakadi Event Bus
 REST API

App A App B App DApp C

Tukang

 REST API
Stream Processing 

via Apache Flink

AWS S3



Saiki Data Platform

Apache Flink

● true stream processing framework
● process events at a consistently high rate 

with relatively low latency
● scalable
● support from Berlin/Europe

https://tech.zalando.com/blog/apache-showdown-flink-vs.-spark/

https://tech.zalando.com/blog/apache-showdown-flink-vs.-spark/
https://tech.zalando.com/blog/apache-showdown-flink-vs.-spark/


Saiki Data Platform

Apache Flink
● connectors

○ Kafka
○ Elasticsearch
○ etc.



Saiki Data Platform

For example: Real-time Business Process Monitoring

● Check if technically the platform works
● Analyze data on the fly
● Visualization with Python/Flask and Chart Frameworks



BI

Data Warehouse
(Oracle)

SAIKI

Saiki Data Platform - Data Lake

 REST API

Nakadi Event Bus
 REST API

App A App B App DApp C

Tukang

 REST API
Stream Processing 

via Apache Flink

Data Lake            .

AWS S3

SQL interface
(HIVE on 

Spark)



Saiki Data Jungbrunnen (1546)



BI

Data Warehouse
(Oracle)

SAIKI

Saiki Data Platform - Data Lake

 REST API

Nakadi Event Bus
 REST API

App A App B App DApp C

Tukang

 REST API
Stream Processing 

via Apache Flink

Data Lake            .

AWS S3

SQL interface
(HIVE on 

Spark)



Open source @ZalandoTech

● https://zalando.github.io/
● https://tech.zalando.de/blog
● https://github.com/zalando/nakadi
● STUPS.io for responsible organizations in AWS

● REST API on Swagger (OpenAPI)
○ https://github.com/zalando/restful-api-guidelines
○ https://github.com/zalando/connexion
○ https://github.com/zalando/play-swagger

https://zalando.github.io/
https://zalando.github.io/
https://tech.zalando.de/blog
https://tech.zalando.de/blog
https://github.com/zalando/nakadi
https://github.com/zalando/nakadi
https://stups.io/
https://stups.io/
https://github.com/zalando/restful-api-guidelines
https://github.com/zalando/restful-api-guidelines
https://github.com/zalando/connexion
https://github.com/zalando/connexion
https://github.com/zalando/play-swagger
https://github.com/zalando/play-swagger

